Lab #6: Measures of Relative Standing Key

1)

a 1	I .		
	PR	?	$PR = \frac{n_w(X-L) + in_b}{100} * 100$
	est	58-65	Ni Ni
	Х	36	$PR = \frac{3(36 - 35.5) + 3 \times 23}{*100}$
	L	35.5	40×3
	n _b	23	$PR = \frac{3(.5) + 69}{100} * 100$
	n _w	3	120
	i	3	$PR = \frac{1.5+69}{100} * 100 = \frac{70.5}{100} * 100$
	Ν	40	120 120
			PR = .5875 * 100 = 58.75

a 2.

PR	?	$PR - \frac{n_w(X-L) + in_b * 100}{100}$
est	18-30	Ni Ni
Х	24.5	$PR = \frac{5(24.5 - 23.5) + 3 \times 7}{100}$
L	23.5	40×3
n _b	7	$PR = \frac{5(1) + 21}{100} * 100$
n _w	5	120
i	3	$PR - \frac{5+21}{100} * 100 - \frac{26}{100} * 100$
N	40	120 120 120
		PR = .2167 * 100 = 21.67

b 1.

Х	?	$(P(N) - n_b)$.
est	24-26	$X = L + \left(\frac{n_{w}}{n_{w}}\right)^{I}$
Р	.22	(22(40) - 7)
L	23.5	$X = 23.5 + \left(\frac{.22(40) - 7}{5}\right)3$
n _b	7	
n _w	5	$X = 23.5 + \left(\frac{8.8 - 7}{5}\right)3$
i	3	(5)
N	40	$X = 23.5 + \left(\frac{1.8}{5}\right)3$
		X = 23.5 + (.36)3
		X = 23.5 + 1.08 = 24.58

b	2.
	_

Х	?	$(P(N) - n_b)$
est	45-47	$X = L + \left(\frac{n_w}{n_w}\right)$
Р	.84	(84(40) - 31)
L	44.5	$X = 44.5 + \left(\frac{.04(40) - 01}{4}\right)3$
n _b	31	
n _w	4	$X = 44.5 + \left(\frac{33.6 - 31}{4}\right)3$
i	3	(4)
N	40	$X = 44.5 + \left(\frac{2.6}{4}\right)3$
		X = 44.5 + (.65)3
		X = 44.5 + 1.95 = 46.45

2)
-	,

\overline{X}	=	$\mathbf{C}_1^* \overline{X}$	+	C ₂
Substituting the values:				
78	3 =	C ₁ *73	+	C ₂
Therefore, let:				
		C ₁ =2 (to fix SD)		$C_2 = -68$ (to fix \overline{X})
Then:				-
78	3 =	2*73	+	-68
So the constants work &				
now we can use them:				
Х	' =	2*X	+	-68
Thus:				
Х	' =	2*82	+	-68
	=	164	+	-68
	=	96		
0'			40	1 1

Since 96 > 92, you did better on the PSY110 test.

3)

Class	Х	X	S	$z = \frac{X - \overline{X}}{s}$
PSY110	82	73	4	$z = \frac{82 - 73}{4} = \frac{9}{4} = 2.25$
PSY290	92	78	8	$z = \frac{92 - 78}{8} = \frac{14}{8} = 1.75$

So, whether we transform one scale to another or use z scores, your Psych 110 test grade is better than the PSY290 test grade.

4) Kurtosis is the peakedness of a normal distribution. A normal distribution can be described as being leptokurtic (thin), mesokurtic, and platykurtic (flat). All three

would give you the same mean, but the leptokurtic distribution would give the smallest standard deviation and the platykurtic distribution would give the largest.

Thus, 63% of the scores fell between a z of -1.0 and a z of 0.8.

5) b. Using the z table, we determine 21% of the scores fell above a z score of 0.8

We need to compute z scores before we can look up relevant values in the table.

z ₁₆₀ =	$\frac{X - \overline{X}}{s} = \frac{X - \overline{X}}{X - \overline{X}}$	1 1	60 - 200 25 80 - 200	= ·	-40 25 -20	= -1.6
Z ₁₈₀ =	= S	_	25	= ·	25	=8
		_				
A	.4452					
-B	.2881					
=C	.1571					

Thus, about 16% scored between a 160 and a 180 on the happiness scale. Approximately 157 people (.1571*1000) will score in that range.

The PR of 210 is 66. Sixty six percent of the distribution scored at or below a 210.

Need to get the z score in order to determine the test score.

$$z = \frac{X - \overline{X}}{s}$$

.84 = $\frac{X - 200}{25}$
X - 200 = .84 × 25
X = (.84 × 25) + 200
X = 21 + 200 = 221

Thus, 80% of the distribution falls below a score of 221.