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Problem 3.47 

For the infinite rectangular pipe in Example 3.4, suppose 

the potential on the bottom (y = 0) and the two sides  

(x = ±b) is zero, but the potential on the top (y = a) is a 

nonzero constant V0.  Find the potential inside the pipe. 
[Note: This is a rotated version of problem 3.14(b), but set it up as in 

Example 3.4 using sinusoidal functions in y and hyperbolics in x.  It is 

an unusual case in which k = 0 must be included.  Begin by finding 

the general solution to Equation 3.26 when k = 0.  For further 

discussion see  

S. Hassani, Am. J. Phys. 59, 470 (1991).] 

Ok, first assert that the potential is separable,     ,V X x Y y  and separate the variables in the usual 

way. 
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The next step is to recognize that the placement of the coordinate axis in the middle of the pipe allows 

both sines and cosines to contribute to the solution for V(x, y) along the x direction.  It also means that 

the k = 0 solution can contribute to V.  To understand this, note that we couldn’t accept the k = 0 solution 

in Example 3.4 because only sines were allowed along the y direction, and the sine of zero is zero, so 

that term in the summation could only add a zero and we disregarded it.  To make that statement even 

clearer, let’s look again at Example 3.4.  If k = 0 contributes to that solution, then we must include linear 

terms like Ex and Fy: 
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For Example 3.4, the potential went from V0 at x = −b to V0 at x = +b, so any solution for X must be 

symmetric about the origin, and the linear term Ex is antisymmetric, thus E = 0.  In that example we 

later learn that A = B and the hyperbolic cosine (the symmetric function) is the one that satisfies the 

boundary conditions and contributes to the potential V.   Furthermore, the function Y must start at zero 

(at y = 0) and return to zero at y = a, something the linear term Fy cannot do, thus F = 0.  That’s why 

Example 3.4 never mentions the linear terms.  

Now in this problem, problem 3.47, I’m going to ignore the hint and go with my gut feeling that the 

solution should be sinusoidal functions in x and hyperbolics in y: 
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We can see that the function X must start at zero (at x = −b) and return to zero at x = b, something the 

linear term Ex cannot do, thus E = 0.  The k = 0 part of X is thus simply a constant: 
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However, a linear term could contribute along the y direction.  This k = 0 portion of the solution would 

look like:  
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where G = C + D.  Now the k = 0 portion of the entire potential V must therefore satisfy these boundary 

conditions: 
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The complete potential, with every possible value of k, must be a sum of the k = 0 term and a nonzero k 

term: 
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To find the 0kV   part, subtract the 0 0kV V y a   part 

from V.  As you can see from the diagram at right, this 

leaves a situation very much like Example 3.4, except 

instead of constant potentials at x = ±b, there are 

potentials that are linear in y.  Note this means that for 

the 0k   portion of the potential, we should choose 

sinusoidal solutions in the y direction and hyperbolic in 

the x direction.  Setting 0kY   equal to zero at y = 0 and  

y = a, we find: 
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Noting that 0kX    must be symmetric, and its constants must be the same as those in 0kY   so that they’ll 

cancel out when you take the second derivatives, we find 
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Combining these two functions, the 0k   portion of the potential looks like: 
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We can find these constants Cn by applying the boundary condition at x = ±b and using Fourier’s trick: 

 
 

 

y 

x 

a 

 

 

 

0 

−b                      b 

 

 

Boundary conditions for just 

the 0kV   portion of the potential 
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We can now add the two potentials 0kV   and 0kV   to get our final answer: 
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Note that in this case both odd and even values of n contribute to the potential.  I’ve graphed the zeroth 

and first 4 values of n on the next page. 

 

I haven’t worked this out, but Griffiths says you can get an equivalent expression by using sinusoidal 

functions of x and hyperbolic functions of y, presumably avoiding the k = 0 term: 
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Note that I added a minus sign in front of the equation when compared with the equation displayed on 

p.159 of the text.  I discovered the minus sign was needed in order to get the spreadsheet summation of 

the first five terms to produce the correct results.  You can see the spreadsheet results on the last page of 

this document.  I haven’t worked out the analytical solution to discover why the minus sign is necessary, 

or whether Griffiths was mistaken when he omitted it. 

 

  



The first few terms of  
   

 
0 0

1

cosh12
, sin

cosh

n n

a

n b
n a

xV V n
V x y y y

a n a













  
   

 
 : 

The k = 0 term 0 :V y a   

 

The n = 1 term: 

 
The n = 2 term: 

 

The n = 3 term: 

 
The n = 4 term: 

 

The sum of the previous 5 terms: 

 
 

Note that this approach does a good job pinning the potential to V0 at y = a, but not such a good job 

nailing it to zero at x = ±b.  The corners at y = a are especially rough. 
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The n = 1 term:  

 

The n = 2 term: 

 

The n = 3 term: 

 

The n = 4 term: 

 
The n = 5 term: 

 

The sum of the previous 5 terms: 

 
 

Note that this approach does a good job pinning the potential to zero at x = ±b, but not such a good job 

nailing it to V0 at y = a.  The corners at y = a are especially rough. 

 


