Discussion Chapter 21: Coulomb's Law

21.54 A charge of $6.0 \mu \mathrm{C}$ is to be split into two parts that are then separated by 3.0 mm . What is the maximum possible magnitude of the electrostatic force between those two parts?
54. Let q_{1} be the charge of one part and q_{2} that of the other part; thus, $q_{1}+q_{2}=Q=6.0 \mu \mathrm{C}$. The repulsive force between them is given by Coulomb's law:

$$
F=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r^{2}}=\frac{q_{1}\left(Q-q_{1}\right)}{4 \pi \varepsilon_{0} r^{2}}
$$

If we maximize this expression by taking the derivative with respect to q_{1} and setting equal to zero, we find $q_{1}=Q / 2$, which might have been anticipated (based on symmetry arguments). This implies $q_{2}=Q / 2$ also. With $r=0.0030 \mathrm{~m}$ and $Q=6.0 \times 10^{-6} \mathrm{C}$, we find

$$
F=\frac{(Q / 2)(Q / 2)}{4 \pi \varepsilon_{0} r^{2}}=\frac{1}{4} \frac{Q^{2}}{4 \pi \varepsilon_{0} r^{2}}=\frac{1}{4} \frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(6.0 \times 10^{-6} \mathrm{C}\right)^{2}}{\left(3.00 \times 10^{-3} \mathrm{~m}\right)^{2}} \approx 9.0 \times 10^{3} \mathrm{~N}
$$

21.42 In Fig. 21-39, two tiny conducting balls of identical mass m and identical charge q hang from nonconducting threads of length L. Assume that θ is so small that $\tan \theta$ can be replaced by its approximate equal, $\sin \theta$. (a) Show that

$$
x=\left(\frac{q^{2} L}{2 \pi \varepsilon_{0} m g}\right)^{1 / 3}
$$

gives the equilibrium separation x of the balls. (b) If $L=120 \mathrm{~cm}, m=10 \mathrm{~g}$, and $x=5.0 \mathrm{~cm}$, what is $|q|$?
42. (a) A force diagram for one of the balls is shown below. The force of gravity $m \vec{g}$ acts downward, the electrical force \vec{F}_{e} of the other ball acts to the left, and the tension in the
 thread acts along the thread, at the angle θ to the vertical. The ball is in equilibrium, so its acceleration is zero. The y component of Newton's second law yields $T \cos \theta-m g=0$ and the x component yields $T \sin \theta-F_{e}=0$. We solve the first equation for T and obtain T $=m g / \cos \theta$. We substitute the result into the second to obtain $m g \tan \theta-F_{e}=0$.

Examination of the geometry of the figure shown leads to $\tan \theta=\frac{x / 2}{\sqrt{L^{2}-(x / 2)^{2}}}$.
If L is much larger than x (which is the case if θ is very small), we may neglect $x / 2$ in the denominator and write $\tan \theta \approx x / 2 L$. This is equivalent to approximating $\tan \theta$ by $\sin \theta$. The magnitude of the electrical force of one ball on the other is

$$
F_{e}=\frac{q^{2}}{4 \pi \varepsilon_{0} x^{2}}
$$

by Eq. 21-4. When these two expressions are used in the equation $m g \tan \theta=F_{e}$, we obtain

$$
\frac{m g x}{2 L} \approx \frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{x^{2}} \Rightarrow x \approx\left(\frac{q^{2} L}{2 \pi \varepsilon_{0} m g}\right)^{1 / 3} .
$$

(b) We solve $x^{3}=2 k q^{2} L / m g$ for the charge (using Eq. 21-5):

$$
q=\sqrt{\frac{m g x^{3}}{2 k L}}=\sqrt{\frac{(0.010 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.050 \mathrm{~m})^{3}}{2\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)(1.20 \mathrm{~m})}}= \pm 2.4 \times 10^{-8} \mathrm{C} .
$$

Thus, the magnitude is $|q|=2.4 \times 10^{-8} \mathrm{C}$.
21.30 In Fig. 21-26, particles 1 and 2 are fixed in place on an x axis, at a separation of $L=8.00 \mathrm{~cm}$. Their charges are $q_{1}=+e$ and $q_{2}=-27 e$. Particle 3 with charge $q_{3}=+4 e$ is to be placed on the line between particles 1 and 2, so that they produce a net electrostatic force $\overrightarrow{\mathbf{F}}_{3 \text {,net }}$ on it.
(a) At what coordinate should particle 3 be placed to minimize the magnitude of that force?
(b) What is that minimum magnitude?

30. (a) Let x be the distance between particle 1 and particle 3 . Thus, the distance between particle 3 and particle 2 is $L-x$. Both particles exert leftward forces on q_{3} (so long as it is on the line between them), so the magnitude of the net force on q_{3} is

$$
F_{\text {net }}=\left|\vec{F}_{13}\right|+\left|\vec{F}_{23}\right|=\frac{\left|q_{1} q_{3}\right|}{4 \pi \varepsilon_{0} x^{2}}+\frac{\left|q_{2} q_{3}\right|}{4 \pi \varepsilon_{0}(L-x)^{2}}=\frac{e^{2}}{\pi \varepsilon_{0}}\left(\frac{1}{x^{2}}+\frac{27}{(L-x)^{2}}\right)
$$

with the values of the charges (stated in the problem) plugged in. Finding the value of x that minimizes this expression leads to $x=1 / 4 L$. Thus, $x=2.00 \mathrm{~cm}$.*
(b) Substituting $x=1 / 4 L$ back into the expression for the net force magnitude and using the standard value for e leads to $F_{\text {net }}=9.21 \times 10^{-24} \mathrm{~N}$.
*Here's how to find the value of x that minimizes the net force. First take the derivative with respect to x and set it equal to zero:

$$
\begin{aligned}
& \frac{d}{d x}\left[\frac{e^{2}}{\pi \varepsilon_{0}}\left(\frac{1}{x^{2}}+\frac{27}{(L-x)^{2}}\right)\right]=\frac{e^{2}}{\pi \varepsilon_{0}}\left[-2 x^{-3}+(-2) 27(L-x)^{-3}(-1)\right] \stackrel{\text { set }}{=} 0 \\
& \frac{54}{(L-x)^{3}}=\frac{2}{x^{3}} \\
& 27 x^{3}=(L-x)^{3} \\
& \sqrt[3]{27} x=L-x \\
& 4 x=L
\end{aligned}
$$

Discussion Chapter 22: Electric Fields

22.04. Two charged particles are attached to an x axis: Particle 1 of charge $-2.00 \times 10^{-7} \mathrm{C}$ is at position $x=6.00 \mathrm{~cm}$ and particle 2 of charge $+2.00 \times 10^{-7} \mathrm{C}$ is at position $x=21.0 \mathrm{~cm}$. Midway between the particles, what is their net electric field in unit-vector notation?
4. With $x_{1}=6.00 \mathrm{~cm}$ and $x_{2}=21.00 \mathrm{~cm}$, the point midway between the two charges is located at $x=13.5 \mathrm{~cm}$. The values of the charge are

$$
q_{1}=-q_{2}=-2.00 \times 10^{-7} \mathrm{C},
$$

and the magnitudes and directions of the individual fields are given by:

$$
\begin{aligned}
& \vec{E}_{1}=-\frac{\left|q_{1}\right|}{4 \pi \varepsilon_{0}\left(x-x_{1}\right)^{2}} \hat{\mathrm{i}}=-\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left|-2.00 \times 10^{-7} \mathrm{C}\right|}{(0.135 \mathrm{~m}-0.060 \mathrm{~m})^{2}} \hat{\mathrm{i}}=-\left(3.196 \times 10^{5} \mathrm{~N} / \mathrm{C}\right) \hat{\mathrm{i}} \\
& \vec{E}_{2}=-\frac{q_{2}}{4 \pi \varepsilon_{0}\left(x-x_{2}\right)^{2}} \hat{\mathrm{i}}=-\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(2.00 \times 10^{-7} \mathrm{C}\right)}{(0.135 \mathrm{~m}-0.210 \mathrm{~m})^{2}} \hat{\mathrm{i}}=-\left(3.196 \times 10^{5} \mathrm{~N} / \mathrm{C}\right) \hat{\mathrm{i}}
\end{aligned}
$$

Thus, the net electric field is $\vec{E}_{\text {net }}=\vec{E}_{1}+\vec{E}_{2}=-\left(6.39 \times 10^{5} \mathrm{~N} / \mathrm{C}\right) \hat{\mathrm{i}}$.

