Exam III
10. Rotational Kinematics and Energy, 297
 10-1. Angular Position, Velocity, and Acceleration, 298
 10-2. Rotational Kinematics, 302
 10-3. Connections Between Linear and Rotational Quantities, 305
 10-4. Rolling Motion, 310
 10-5. Rotational Kinetic Energy and the Moment of Inertia, 311
 10-6. Conservation of Energy, 315

11. Rotational Dynamics and Static Equilibrium, 332
 11-1. Torque, 333
 11-2. Torque and Angular Acceleration, 336
 11-3. Zero Torque and Static Equilibrium, 340
 11-4. Center of Mass and Balance, 347
 11-5. Dynamic Applications of Torque, 350
 11-6. Angular Momentum, 352
 11-7. Conservation of Angular Momentum, 355
 11-8. Rotational Work and Power, 360 [we didn’t have any homework questions specifically from this section, but you should be familiar with the concepts]
*11-9. The Vector Nature of Rotational Motion, 361

Physics in Perspective: Momentum: A Conserved Quantity, 376

12. Gravity, 378
 12-1. Newton’s Law of Universal Gravitation, 379
 12-2. Gravitational Attraction of Spherical Bodies, 382
 12-3. Kepler’s Laws of Orbital Motion, 387
 12-4. Gravitational Potential Energy, 394
 12-5. Energy Conservation, 397
*12-6. Tides, 404
13. Oscillations About Equilibrium, 415
 13-1. Periodic Motion, 416
 13-2. Simple Harmonic Motion, 417
 13-3. Connections Between Uniform Circular Motion and Simple Harmonic Motion, 420
 13-4. The Period of a Mass on a Spring, 426
 13-5. Energy Conservation in Oscillatory Motion, 431
 13-6. The Pendulum, 433 (but not The Physical Pendulum)
 13-7. Damped Oscillations, 439
 13-8. Driven Oscillations and Resonance, 440

14. Waves and Sound, 452
 14-1. Types of Waves, 453
 14-2. Waves on a String, 455
 14-3. Harmonic Wave Functions, 458
 14-4. Sound Waves, 459
 14-5. Sound Intensity, 463
 14-6. The Doppler Effect, 468
 14-7. Superposition and Interference, 474
 14-8. Standing Waves, 478
 14-9. Beats, 485

15. Fluids, 499
 15-1. Density, 500
 15-2. Pressure, 500
 15-3. Static Equilibrium in Fluids: Pressure and Depth, 504
 15-4. Archimedes' Principle and Buoyancy, 509
 15-5. Applications of Archimedes’ Principle, 511
 15-6. Fluid Flow and Continuity, 516
 15-7. Bernoulli’s Equation, 518
 15-8. Applications of Bernoulli’s Equation, 521
 15-9. Viscosity and Surface Tension, 524