Lecture 19 Light and Blackbody Radiation January 8c, 2014

EXPLORATION

An Introduction to Astronomy

THOMAS T. ARNY STEPHEN E. SCHNEIDER

Observing the Sky

- Almost everything we know about the universe comes from light.
- By understanding the nature of light we can get information about stars, planets and distant galaxies
 - distance
 - size
 - mass
 - motions (direct and rotational)
 - composition

Nature of Light

- Light = radiant energy = "radiation"
 - some light we can see (visible light)

- mostly we cannot (UV, X-rays, radio, etc.)

- Newton was interested in the nature of light – Passed light though a prism
 - Light separated into separate colors

Light is made of different colors

People thought colors came from the glass, but Newton showed that the light itself is made up of many colors.

The Speed of Light

- 1675 -- Ole Roemer
 - Time when Jupiter eclipsed on of its moons did not always agree with that predicted by Kepler's laws.
 - It depended on the Earth's distance to Jupiter.

The Speed of Light

- Speed of light, c = 300,000 km/sec (186,000 mi/sec) {precisely known to be 299,792.458 km/s}
 - It takes 8 minutes for light to travel from the Sun to the Earth.
- Light-year = distance light travels in a year = 9.4605×10^{12} km
- \rightarrow All information from outer space is *delayed* ..., we see everything in the past!

If it takes one hour for light to travel from Saturn to Earth, how far apart are the two planets?

A. 1.0 AU

7

- B. 3.6 AU
- C. 7.2 AU
- D. 14 AU

If it takes one hour for light to travel from Saturn to Earth, how far apart are the two planets?

- A. 1.0 AU
- B. 3.6 AU
- C. 7.2 AU
- D. 14 AU

 $d = ct = (3.00 \times 10^8 \text{ m/s})(3600 \text{ s})$ $= 1.08 \times 10^{12} \text{ m} \times \frac{1 \text{ AU}}{1.5 \times 10^{11} \text{ m}} = \boxed{7.2 \text{ AU}}$

Light as a Wave

- Wavelength (λ) = distance from peak to peak (measured in meters)
- Frequency (f) = number of peaks to pass a certain point (measured in Hertz = #/sec)

Animation applet

Light as a Wave

- The greater the frequency, the shorter the wavelength.
- The speed in vacuum always remains the same!

Color is determined by the wavelength of light (λ)

- 1 nanometer (nm) = 1 billionth of a meter = 1×10^{-9} m

What is the wavelength of microwaves produced at 2.45 GHz by a microwave oven?

- A. 2.45 nm
- B. 8.17 μm
- C. 12.2 cm
- D. 7.35 m

What is the wavelength of microwaves produced at 2.45 GHz by a microwave oven?

A. 2.45 nm B. 8.17 μ m C. 12.2 cm D. 7.35 m $\lambda = \frac{c}{f} = \frac{3.00 \times 10^8 \text{ m/s}}{2.45 \times 10^9 \text{ Hz}}$ = 0.122 m = 12.2 cm

Light as a Particle

- Photon = particle of light
- Energy of photon depends on its wavelength

Energy =
$$h \times$$
 frequency = $\frac{hc}{\text{wavelength}}$

1

$$E = h f = \frac{hc}{\lambda} = \frac{1240 \text{ eV} \cdot \text{nm}}{\lambda}$$

- The longer the wavelength, the lower the energy.
- The lower the frequency, the lower the energy
- eV is a unit of energy $1 eV = 1.6 \times 10^{-19} J$

What is the energy of a photon of visible light of wavelength 520 nm?

- A. 645 keVB. 2.38 eV
- C. 0.419 eV
- D. 520 eV

What is the energy of a photon of visible light of wavelength 520 nm?

A. 645 keV **B.** 2.38 eV C. 0.419 eV D. 520 eV $E = h f = \frac{hc}{\lambda}$ $E = h f = \frac{1240 \text{ eV} \cdot \text{nm}}{\lambda}$ $= \frac{1240 \text{ eV} \cdot \text{nm}}{520 \text{ nm}} = 2.38 \text{ eV}$

The Electromagnetic Spectrum

- Light has electric and magnetic properties so all of light is called the *electromagnetic spectrum*.
- The spectrum is divided up by wavelength
- All light, regardless of wavelength, travels at the same speed of light.

Question: What type of light has the Shortest wavelength? Longest wavelength? Lowest frequency? Highest frequency? Lowest Energy? Highest Energy?

Atmospheric Opacity

- The atmosphere (and sometimes material in outer space) blocks some wavelengths of light
- Opacity = percentage of light blocked by atmosphere
- Wavelengths where light can get through the atmosphere are called "windows"
 - Low opacity: Visible and Radio:
 - Medium opacity: Infrared and UV
 - High opacity: Gamma Rays, X-rays & some UV

Blackbody Radiation

- Light emitted by a <u>solid, liquid</u> or dense gas
- Light is emitted at all wavelengths
- Amount of light depends on temperature

Wien's Law

• The wavelength at which the brightness peaks is inversely proportional to the temperature

$$\lambda_{\text{peak}} = \frac{2.9 \times 10^6}{T} \quad or \quad T = \frac{2.9 \times 10^6}{\lambda_{\text{peak}}}$$

- WhereT is in Kelvins λ_{peak} is in nanometers (10⁻⁹ meters)
- high temperatures peak at short wavelengths
- Does not depend on size of object, only temperature

An oven burner is at 1341°F (1000 K). At what wavelength does it emit the most radiation?

- A. 2900 nm
- B. 345 nm
- C. 1341 nm
- D. 2160 nm

An oven burner is at 1341°F (1000 K). At what wavelength does it emit the most radiation?

- A. 2900 nm
- B. 345 nm
- C. 1341 nm
- D. 2160 nm

$$\lambda_{\rm max} = \frac{2.9 \times 10^6 \text{ nm} \cdot \text{K}}{1000 \text{ K}} = 2900 \text{ nm}$$

Stefan-Boltzmann Law

- Blackbody spectrum <u>applet</u>
- The energy radiated per area per second from an object (the Flux) increases rapidly with temperature.

F = Flux
F = Flux

$$\sigma = 5.67$$

 $T = Temr$

$$F = \text{Flux (Watts/m^2)}$$

$$\sigma = 5.67 \times 10^{-8} \text{ W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$$

$$T = \text{Temperature (K)}$$

• As the Kelvin temperature increases, the flux increases.

How much more flux is emitted by a star with an 8000 K surface temperature than one with a 6000 K surface temperature?

- A. 1.33×
- **B.** 1.07×
- C. 5.33×
- D. 3.16×

How much more flux is emitted by a star with an 8000 K surface temperature than one with a 6000 K surface temperature?

A. 1.33×

B. $1.07 \times \frac{F_B}{F_A} = \frac{\sigma T_B^4}{\sigma T_A^4} = \frac{(8000 \text{ K})^4}{(6000 \text{ K})^4} = 3.16$ D. $3.16 \times F_A$

Luminosity

Luminosity = Flux × surface area $L = \sigma T^4 \times 4\pi r^2$

- The total energy emitted per second (luminosity) depends on the temperature *T* AND size *r* of the object
- For the same temperature, a bigger star emits a larger total amount of energy

Questions

- Star A is brightest at radio wavelengths.
- Star B is brightest in X-rays

- Which star has the higher temperature?
 A. Star A B. Star B C. Can't say
- Which star is emitting the most light per area?
 A. Star A B. Star B C. Can't say
- Which star has the highest luminosity?
 A. Star A B. Star B C. Can't say

Questions

- Star B has the higher temperature because the higher the temperature, the bluer the color emitted.
- Star B is emitting the most light per area. The Stefan-Boltzman law says the Watts/m² emitted is proportional to the temperature to the fourth power.
- We can't tell which star (A or B) is emitting the most energy in general because that depends on both size and temperature, and we only know the relative temperatures of stars A and B.

Apparent Brightness

- The brightness an object appears to have.
- The further away the object, the dimmer it looks

Apparent Brightness = $\frac{\text{Luminosity}}{4\pi d^2}$ d = distance

How much brighter or dimmer does Star A appear compared to Star B if both have the same luminosity?

A. Star A is 9 times dimmer than Star BB. Star A is 3 times dimmer than Star BC. Star A is 3 times brighter than Star BD. Star A is 9 times brighter than Star B

Question

How much brighter or dimmer does Star A appear compared to Star B if both have the same luminosity?

Inverse Square Law

Determining Distance

- Measure apparent brightness
- Measure intrinsic brightness (luminosity)
 - Need temperatureNeed size of object

$$L = 4\pi R^2 \times \sigma T^4$$

- Compare intrinsic brightness to apparent brightness to determine distance.
- Problem: the size of objects is rarely known and is hard to measure.