Lecture 6 Kepler's Laws of Motion January 3c, 2014

EXPLORATION

An Introduction to Astronomy

THOMAS T. ARNY STEPHEN E. SCHNEIDER

Johannes Kepler (1571-1630)

- Assistant to Brahe (1600-01)
- Believed in heliocentric model (Copernicus).
- Wanted mathematical model of orbits
- Used observations by Brahe
- Used trial and error to test models

Kepler's First Law

• The orbit of a planet about the Sun is an ellipse with the Sun at one focus.

Elliptical Orbit

For the Sun and the planets the orbits are almost circular.

Eccentricity = Shape of Orbit

• Values range from 0 to 1 $\rightarrow 0 = perfect circle$

$$\rightarrow 0.5 = \text{ellipse}$$

 $\rightarrow 1.0 = \text{straight line}$

$$\varepsilon = \sqrt{1 - \frac{b^2}{a^2}}$$

Elliptical Distances

Kepler's Second Law

• "The Law of Equal Areas" -- A line joining a planet and the Sun always sweeps out equal areas in equal intervals of time.

Animation applet

Question

• Does the speed of an object change in an elliptical orbit? If so, where does it move fastest and where does it move slowest?

Speed of Planets in Elliptical Orbits

Kepler's Third Law

- $P^2 = a^3$
 - -P = sidereal period in years
 - -a = semi-major axis in AU
 - AU = Astronomical Unit = Average distance between the Earth and the Sun
 - The closer a planet is to the Sun, the less time it takes to go around the Sun.

Example: If P = 8 years then $P^2 = 64 = a^3$ $\Rightarrow a = \sqrt[3]{64} = 4$ AU

A new comet is detected with a period of 1000 years. What is its semi-major axis? A. 3.16 AU **B.** 10 AU C. 31.6 AU D. 100 AU

12

A comet is detected with a period of 1000 years. What is its semi-major axis?

- A. 100 AU If P = 1000 years then
 - $P^2 = 1,000,000 = a^3$
 - $\Rightarrow a = \sqrt[3]{1,000,000} = 100 \text{ AU}$
- C. 10 AU D. 3.16 AU

B. 31.6 AU

A new comet is detected with a period of 1000 years. If its eccentricity is high (0.9), will it spend more time further than 100 AU or closer than 100 AU from the Sun?

- A. Further than 100 AU
- B. Closer than 100 AU
- C. It will remain at 100 AU the entire time
- D. It depends upon the angle of its orbital plane.

A new comet is detected with a period of 1000 years. If its perihelion distance is 43.5 AU, what is its aphelion distance?

A. 43.5 AU B. 56.5 AU C. 156.5 AU D. 243.5 AU

15

A new comet is detected with a period of 1000 years. If its perihelion distance is 43.5 AU, what is its aphelion distance?

A. 43.5 AU
B. 56.5 AU
C. 156.5 AU
D. 243.5 AU

16

 $r_{\text{perihelion}} + r_{\text{aphelion}} = 2a = 200 \text{ AU}$ $r_{\text{aphelion}} = 200 \text{ AU} - 43.5 \text{ AU} = 156.5 \text{ AU}$

General Comments on Kepler's Laws

- They apply to <u>all</u> orbiting bodies (moons, planets, stars, galaxies..), although the mathematics of the 3rd law need slight modification.
- Kepler's model was constructed to fit the data it was NOT derived from physical principles
- It is simpler than the Copernican model, and fits the data more accurately