Lecture 5 The Heliocentric Model of the Universe January 3b, 2014

EXPLORATIONS

An Introduction to Astronomy

THOMAS T. ARNY STEPHEN E. SCHNEIDER

Aristarchus (310-230 BC)

- Proposed Earth orbited the Sun.
- More easily explained retrograde motion.
- Animation

Aristarchus (310-230 BC)

- His hypothesis was rejected
 - Earth does not feel like it is moving.
 - No parallax of stars was observed.

Parallax

- If you look at an object from two different places (but at same distance) it will appear to move with respect to the background.
- Change in position = parallax angle

Parallax

- The greater the distance, the smaller the parallax angle
- The greater the baseline (distance from A to B), the greater the parallax angle.

parallax angle (°) =
$$57.3 \times \frac{\text{baseline (km)}}{\text{distance (km)}}$$

or
distance (km) = $57.3 \times \frac{\text{baseline (km)}}{\text{parallax angle (°)}}$

Distance and the Parallax-Second

- A parsec is the distance that corresponds to one arc second of parallax when the baseline is 1 astronomical unit
- $1.00 \text{ AU} = 1.50 \times 10^8 \text{ km}$

1.00 pc = $57.3 \times \frac{\text{baseline (km)}}{\text{parallax angle (°)}}$ $=57.3 \times \frac{1.50 \times 10^8 \text{ km}}{(1/3600)^\circ}$ $= 3.09 \times 10^{13} \text{ km} \times \frac{1 \text{ ly}}{9.46 \times 10^{12} \text{ km}}$ 1.00 pc = |3.26 ly|

A star shows a parallax angle of 0.10 arcsec when the Earth moves one AU. What is the distance to the star?

A. 1.00 pc

7

- B. 3.26 pc
- C. 10 pc
- D. 0.10 pc

A star shows a parallax angle of 0.10 arcsec when the Earth moves one AU. What is the distance to the star?

- A. 1.00 pc (see p. 349 of the text)
- B. 3.26 pc
- C. 10 pc
- D. 0.10 pc
- distance (pc) $=\frac{1}{p}=\frac{1}{0.10 \text{ arcsec}}$

$$=$$
 10 pc $=$ 32.6 ly

After a Few Centuries...

- Geocentric model became more complicated.
 - Ptolemy used inaccurate data
 - Predictions not accurate on large time scales

Nicholas Copernicus (1473-1543)

- Heliocentric (sun centered) model of the Solar System.
- De Revolutionibus
 Orbium Coelestium
 (1543)
- Knew about work of Aristarchus

Basic Heliocentric View

- Heliocentric Model = Sun at center
- Planets orbit the Sun
- Moon orbits the Earth.
- Circular orbits

Accuracy

- NOTE: The heliocentric model did NOT predict positions better than the geocentric model
 - But it was simple.
- Occam's Razor: If choosing between competing theories that are all similarly accurate, choose the simplest one.

Results of Heliocentric Model

- Could predict positions of planets
 BUT only as well as Ptolemy's model
- Could calculate distances to planets in units of distance between the Earth and the Sun
 - BUT the results could not be checked.

Galileo Galilei (1564-1642)

- Supported Copernican model.
- Used telescope to observe sky (1610).
 - Mountains on the moon
 - Rings of Saturn
 - Sunspots
 - Milky Way is made of stars

Observations of Venus

- Venus has phases similar to the moon.
- The apparent size of Venus changes with the phase.

Question

- What would you expect to see if Venus orbited the Earth?
- How does Galileo's observation support the heliocentric model?

Geocentric Model of Venus

Phases of Venus

• If Venus was orbiting the Earth, its distance would not change and its size would stay the same.

Observations of Jupiter

- Observations of
 Jupiter
 - Observed the 4 largest moons of Jupiter (Galilean Moons).
 - The fact that bodies could orbit other planets supported heliocentric view.

Obronationer Jerniako 2 J. Jonis: manett. 12 0 + +
30. mont ++ 0 +
2. x6n: Q** *
3. mont 0 * *
3.16.5. *0 *
q. mont. *0 **
6. mand # # 0 #
8. marc H.13. # * * 0
10. mape: * * + 0 *
II. * *O *
12. H. quy: * 0 *
17. mayle" # #+0 #
14 danie. * * * 0 *

Tycho Brahe (1546-1601)

- Supported geocentric model
- Pre-dates invention of telescope
- Observed supernova (1592)
- Believed stars unchanging
 - "New" star must be near
 Earth

Tycho's Supernova

- Tried to measure distance to supernova using parallax.
- No parallax observed
 Why?
 - Supernova much more distant that originally thought.
- Heavens are NOT unchanging

Tycho's Observations

- He was given an island for observatory by King of Denmark
 - "Uraniborg"
- He designed state-of-the-art instruments to observe sky (all naked eye observations).
- He made detailed observations of planetary and stellar positions.
 - His positions accurate up to 1 arcminute (1/60 of a degree)

Tycho's observations

- Used many instruments to confirm results.
- Same method used by modern astronomers.
- Measurements eventually used by others to distinguish between geocentric and heliocentric theories, as well as to determine the exact shape of planetary orbits.

Planetary Configurations

- Some of the simplest planetary observations you can make are their positions relative to the Earth and the Sun the planetary configuration
 - Inferior conjunction between us and the Sun (a *transit* occurs when it is silhouetted against the Sun's bright disk)
 - Superior conjunction on the other side of the Sun from us
 - Opposition directly opposite the Sun in the sky
 - Greatest elongation for Venus and Mercury, when they are at their greatest angular separation from the Sun. Can be either eastern or western

Planetary Configurations

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Courtesy of Dominique Dierick

Greatest elongations of Mercury and Venus

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

View from Space

Figure E1.11

Sidereal vs. Synodic Period

- Each planet can be described by two periods
 - Sidereal Period the time required for the planet to orbit the Sun once with respect to the fixed stars
 - Synodic Period the time required for the planet to return to the same configuration
- The two periods differ due to the motion of the Earth in its orbit around the Sun