Measuring the Mass of Jupiter Lab

Newton's General form of

 Kepler's Third Law$\left(M_{1}+M_{2}\right) P^{2}=a^{3}$
M in Solar Units (mass of Sun)
P in Years
a in Astronomical Units (AU)
In this case,
$-M_{1}=$ Mass of Jupiter $=M_{\mathrm{J}}$
$-M_{2}=$ Mass of a moon (small compared to M_{J})

Simplifying Things

But, the mass of the moon is much less than the mass of Jupiter so we can say it is very close to zero so....

$$
\left(M_{\mathrm{J}}+0\right) P^{2}=a^{3}
$$

or

$$
M_{\mathrm{J}}=\frac{a^{3}}{P^{2}}
$$

Observations

- We need to measure the period P and the semi-major axis a of the orbit of the moons.
- Watch the moons over the course of several days.
- We can only observe from the Earth

Reading the Chart

