Measuring the Mass of Jupiter Lab
Newton’s General form of Kepler’s Third Law

\[
(M_1 + M_2) P^2 = a^3
\]

In this case,

- \(M_1 \) = Mass of Jupiter = \(M_J \)
- \(M_2 \) = Mass of a moon (small compared to \(M_J \))

\(M \) in Solar Units (mass of Sun)

\(P \) in Years

\(a \) in Astronomical Units (AU)
Simplifying Things

But, the mass of the moon is much less than the mass of Jupiter so we can say it is very close to zero so….

\[(M_J + 0) P^2 = a^3\]

or

\[M_J = \frac{a^3}{P^2}\]
Observations

• We need to measure the period P and the semi-major axis a of the orbit of the moons.
 – Watch the moons over the course of several days.

• We can only observe from the Earth
Reading the Chart

Apparent Position (J.D.)

Time (days)

P

a

P

P