Conditional Propositions and Logical Equivalence

Section 1.2

Prof. Nathan Wodarz

Math 209 - Fall 2008

Contents

1 Conditional Propositions .. 2
 1.1 Conditional Propositions ... 2
 1.2 Truth Table of Conditional Propositions 2
 1.3 Conditional Propositions in Computing 3
 1.4 The Converse .. 4
 1.5 Biconditional Proposition .. 4

2 Logical Equivalence .. 5
 2.1 Logical Equivalence .. 5
 2.2 De Morgan’s Laws ... 5
 2.3 The Contrapositive .. 6
1 Conditional Propositions

1.1 Conditional Propositions

Conditional Propositions

- “If it rains this afternoon, then I will carry an umbrella” is a proposition

- Is the proposition true or false?
 - *True* if it rains and I carry an umbrella.
 - *False* if it rains and I don’t carry an umbrella.
 - What if it doesn’t rain?

- If \(p \) and \(q \) are propositions, the proposition “if \(p \) then \(q \)” is a conditional proposition.
 - Denoted \(p \rightarrow q \)
 - \(p \) is the hypothesis or antecedent.
 - \(p \) is also called a sufficient condition.
 - \(q \) is the conclusion or consequent.
 - \(q \) is also called a necessary condition.
 - \(p \rightarrow q \) is another binary operator.

1.2 Truth Table of Conditional Propositions

Truth Table of \(p \rightarrow q \)

- When is \(p \rightarrow q \) true?
 - *True* if both \(p \) and \(q \) are true.
 - *False* if \(p \) is true, but \(q \) is false.
 - *True* if \(p \) is false.
 - Referred to as either:
 * True by default,
 * Vacuously true,
* Trivially true

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p → q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Truth Table of \(p \rightarrow q \)

Example. “If Brett Favre is the starting quarterback for the Packers, then \(2 + 2 = 5 \)” is a true proposition.

Problem. Complete the truth table.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>(\neg(p \rightarrow q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

1.3 Conditional Propositions in Computing

The “if-then” Statement

- There is no direct analog to \(p \rightarrow q \) in Java.
- Java does have an “if-then” statement

```java
if (condition){
    statement
}
```

- If \(condition \) is true, then \(statement \) executes
- If \(condition \) is false, then \(statement \) is irrelevant.
1.4 The Converse

The Converse

Problem. Complete the truth table.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$q \to p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

- Let $p \to q$ be a conditional proposition. The converse of $p \to q$ is $q \to p$
- The converse is not the same as the original proposition.

The Converse

Example.
- “If Brett Favre is the starting quarterback for the Packers, then $2 + 2 = 4$” is a true proposition.
- “If $2 + 2 = 4$, then Brett Favre is the starting quarterback for the Packers” is a false proposition.
- These propositions are converses of each other.

1.5 Biconditional Proposition

Biconditional Proposition

- If p and q are propositions, then “p if and only if q” or “p iff q” is a biconditional proposition.
- We denote it by $p \leftrightarrow q$
- $p \leftrightarrow q$ is true precisely when p and q have the same truth values

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \leftrightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
2 Logical Equivalence

2.1 Logical Equivalence

Logically Equivalent Propositions

- If P and Q are compound propositions built from p_1, p_2, \ldots, p_n, then P and Q are logically equivalent provided that P and Q have the same truth values, no matter what truth values p_1, p_2, \ldots, p_n have.
 - We denote this $P \equiv Q$
 - This is the same as $P \leftrightarrow Q$ being a tautology.

Example.
- $\neg (p \rightarrow q) \equiv p \land \neg q$
- $p \rightarrow q \equiv q \rightarrow p$

Logically Equivalent Propositions

Example. $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \leftrightarrow q$</th>
<th>$p \rightarrow q$</th>
<th>$(p \rightarrow q) \land (q \rightarrow p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

2.2 De Morgan’s Laws

De Morgan’s Laws

Theorem 1. De Morgan’s Laws

- $\neg (p \lor q) \equiv \neg p \land \neg q$
- $\neg (p \land q) \equiv \neg p \lor \neg q$

- Augustus De Morgan was a 19th century British mathematician, born in India.
- Gives a way of negating conjunctions and disjunctions.
2.3 The Contrapositive

The Contrapositive

- The contrapositive of a proposition \(p \rightarrow q \) is the proposition \(\neg q \rightarrow \neg p \).

Theorem 2. The conditional proposition \(p \rightarrow q \) is logically equivalent to its contrapositive \(\neg q \rightarrow \neg p \).

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(\neg(p \lor q))</th>
<th>(\neg p \land \neg q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Summary

You should be able to:

- Use *conditional* and *biconditional* propositions.
- Use the *converse* and *contrapositive* of a statement.
- Identify *logically equivalent* propositions.
- Use *De Morgan's Laws*.