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The purpose of this paper is to introduce a new test-problem collection for stochastic linear programming that
the authors have recently begun to assemble. While there are existing stochastic programming test-problem

collections, our new collection has three features that distinguish it from existing collections. First, our collection
is web-based with free public access, and we intend to enrich it as new test problems become available. Indeed,
we encourage submissions of new test problems. Second, along with the collection we provide documentation
of the problems, so that researchers can quickly find information about each family without reading through the
original source. Third, all of the data in our collection are provided in SMPS (Birge et al. 1987, Gassmann and
Schweitzer 2001) format. In this paper, we provide an introduction to the stochastic linear program, give a brief
description of each problem family currently in the test-problem collection, and describe the documentation that
accompanies the collection.
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1. Introduction
Stochastic programming (Kall and Wallace 1994,
Prékopa 1995) has grown in importance in recent
decades, because advances in computing power and
algorithm development have brought us to a point
where realistic problem instances can be solved in a
reasonable amount of time. With strong interest in
solving such problems and in finding more efficient
solution techniques, there has arisen a need for a col-
lection of stochastic programming test problems. A
high-quality test-problem collection would not only
assist algorithm development by providing a stan-
dard set of problems with which to challenge new
algorithm implementations, but also the teaching of
stochastic programming.
One of the most popular forms of stochastic pro-

gramming problems is the multistage stochastic linear
program with recourse (MSSLP). See §2 for a precise
statement of the MSSLP problem. While MSSLPs are
growing in popularity, many of the applications are
proprietary, and therefore the models are not publicly
available. Test-problem collections of MSSLPs exist
(King 1988, Holmes 1997). However, they need to be
enriched with newer applications. In fact, in some
cases, the application associated with the existing test
case is not known. Also, it would be helpful if the
original applications were described in the notation

of the original model, and related to a unified nota-
tion such as in §2. In addition, it would be desirable
if the data for the test problems is available in SMPS
(Birge et al. 1987, Gassmann and Schweitzer 2001), the
(emerging) standard for specifying input to software
for MSSLPs.
To address the above needs, we have collected a

group of 11 problem families from a variety of settings
and literature sources. Here and in the rest of the paper
we use the following terminology. A problem state-
ment where symbols are used to represent problem
data, such as the one given by Equations (1)–(4) for
MSSLPs, may be thought of as representing a problem
class. A problem class is thus a set, and each of its
members is uniquely identified by a complete speci-
fication of numerical values for the data symbols. We
refer to such members as problem instances. A prob-
lem family is a subset of the problem class such that
data specifying all problem instances in the family
share a common mathematical structure. It is often
the case that all possible problem instances that may
arise from a specific real-world application belong to
a problem family.
The 11 families in the collection all represent

MSSLPs, but of various structures and sizes, with
randomness occurring in different parts in differ-
ent problems. For some families, problem instances

291



Ariyawansa and Felt: On a New Collection of Stochastic Linear Programming Test Problems
292 INFORMS Journal on Computing 16(3), pp. 291–299, © 2004 INFORMS

were explicitly stated in the literature. In other cases,
we created the instances based solely on the family
description in the literature, and in some cases, there
is not yet any instance in the collection.
The problem instances that are available as an

INFORMS Journal on Computing Online Supplement
(see http://joc.pubs.informs.org/) to this paper are
all in SMPS format (Birge et al. 1987, Gassmann and
Schweitzer 2001). Included is a chapter of problem
descriptions. Each section of the chapter covers a sin-
gle problem family. At the beginning of each section,
we give a citation to the original application, a brief
description of the problem structure, and, if applica-
ble, the names of the SMPS files for the associated
problem instances. We then present a description of
the original application, a concise problem statement
and, if available, an example of an instance given by
the model authors. We have attempted to stay as close
to the authors’ notation as possible in these subsec-
tions. Additionally, where feasible, we present a nota-
tional reconciliation, which shows how to transform
the notation of the problem into that in §2.
Currently, all problem instances contain only ran-

dom variables with discrete and finite probability dis-
tributions. The primary reason for this is that the
authors’ first use of the test-problem collection was to
test the performance of algorithms for such problems.
Moreover, most existing algorithms eventually work
with such distributions.
It is the intention of the authors to add families of

problems to the collection as new application areas
become prominent and to add test-problem instances
as they become available. We are especially inter-
ested in adding problems with continuous or infinite
probability distributions. The collection will continue
to be freely available to the stochastic programming
community.
In that spirit, we encourage colleagues to submit

new problem data with an accompanying description.
Such submissions should include the following:
1. description of the application and problem

notation;
2. problem statement, in the same notation;
3. numerical example, if practical;
4. reconciliation to the notation of §2;
5. data files in SMPS format for each instance; and
6. optimal solutions for each instance and example.
The rest of the paper is organized as follows. In §2,

we present a standard form for the MSSLP and indi-
cate some common simplifications and extensions. In
§3, we provide a short description of each of the prob-
lem families in the test collection. Section 4 briefly
describes the documentation format for a problem
family in the chapter that is distributed with the test
collection. Finally, we have some concluding remarks
in §5.

As part of testing the algorithms developed by
Ariyawansa and Jiang (1996), we have also devel-
oped C routines that convert SMPS data into a data
structure suitable for implementing algorithms for
stochastic programs. These routines are available as
open source in the Online Supplement to this paper
available from this journal’s website (http://joc.pubs.
informs.org/).

2. A Standard Form for the Multistage
Stochastic Linear Program with
Recourse

In this section we state a standard form for the
multistage stochastic linear program with recourse
(MSSLP). The form we state is intended to represent
the mathematical statements of the MSSLP for which
algorithms, especially those based on cutting-plane
notions, are usually formulated.
We begin by describing the underlying probability

structure. In this paper, random variables will be rep-
resented in boldface while their realizations will be
denoted by the same symbols in normal face. We have
N sequential discrete time stages with Stage 1 repre-
senting the present. Time Stages 2�3� � � � �N occur in
the future sequentially in that order, at which real-
izations of random variables �2��3� � � � ��N become
available respectively. Let �2� �3� � � � � �N be realizations
of �2��3� � � � ��N respectively. We denote the present
by �1 (a realization of �1) and for t = 1�2� � � � �N
refer to �t �= ��1� �2� � � � � �t	 as a partial scenario. It
is customary in stochastic programming to refer to
�N �= ��1� �2� � � � � �N 	 as a scenario, and our term par-
tial scenario reflects the fact that at Stage t we know
only realizations �1� �2� � � � � �t of a scenario. Note that
a partial scenario is not unique to a scenario. We
let �t denote the set of partial scenarios �t for t =
1�2� � � � �N . The distribution of �t+1 given �t is known
for all �t ∈�t for t = 1�2� � � � �N − 1.
We now describe the decision structure associated

with an MSSLP. For t = 1�2� � � � �N , decision xt is
made at Stage t after the realization of �t becomes
available. The decision x1 needs to be taken at present
from the set �x1� A1x1 = b1�x1 ≥ 0� so that the sum
of a direct cost cT1 x1 and the expected value �2�x1� �1	
of future decisions to be taken are minimized. The
decision xt for t ≥ 2 represents a recourse deci-
sion that may be taken, depending on the decisions
x1�x2� � � � � xt−1 that have been taken, partial scenario
�t−1 that has been observed, and realization �t of �t
just observed, so that the sum of a direct cost cTt xt and
the expected cost �t+1��t��t	 of the future recourse
decisions to be taken are minimized, where �t �=
�x1�x2� � � � � xt	.
Since there are no future stages after Stage N , we

let �N+1��N ��N 	 �= 0 for all �N and all �N . For t ≤
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N − 1��t+1��t��t	 is defined recursively in a specific
manner. We now state the following standard form
for the MSSLP that includes this recursive definition:

minimize cT1 x1+�2�x1� �1	

subject to A1x1 = b1 (1)

x1 ≥ 0

where �2�x1� �1	 is defined (with �1 �= �1 and �1 �= x1)
by the recursion

�t+1��t��t	 �=E�Qt+1��t��t��t+1	 ��t�� (2)

Qt+1��t��t��t+1	

�=inf
xt+1

{
ct+1��t+1	

Txt+1+�t+2��t+1��t+1	� At+1��t+1	xt+1

= bt+1��t+1	−
t∑

i=1
T�t+1	i��t+1	xi�xt+1≥0

}

for t=1�2�����N−1� (3)

Here �t+1 is a realization of �t+1 given �t ; vectors
ct+1��t+1	, bt+1��t+1	 and matrices At+1��t+1	, T�t+1	i��t+1	
�i = 1�2� � � � � t	 are realizations of random variables
dependent on �t+1��t+1 �= ��t� �t+1	, and �t+1 �=
��t� xt+1	 for t = 1�2� � � � �N − 1; and

�N+1��N ��N 	 �= 0 (4)

for all �N and �N . Note that the input data for the
MSSLP in form (1)–(4) above consist of:

first stage deterministic data c1, b1, A1, and
for all �t−1∈�t−1 the conditional distribution
of �ct��t	�bt��t	�At��t	�Tti��t	
�i=1�2�����t−1		 given �t−1�
for t=2�3�����N .

(5)

An important special case of (1)–(4) is the case where
the distribution of �t+1 is independent of �t ∈ �t

for t = 2�3� � � � �N − 1. Many MSSLPs in applications
belong to the independent case, and sometimes (see
Birge and Louveaux 1997, §3.5, for example) only the
independent case is explicitly stated. Since we request
contributors of test problems to our collection to pro-
vide a notational reconciliation to our standard form,
we state this special case of (1)–(4) for convenient
reference:

minimize cT1 x1+�2�x1	

subject to A1x1 = b1 (6)

x1 ≥ 0

where �2�x1	 is defined (with �1 �= x1) by the recur-
sion

�t+1��t	 �= E�Qt+1��t��t+1	�� (7)

Qt+1��t� �t+1	

�= inf
xt+1

{
ct+1��t+1	

Txt+1+�t+2��t+1	� At+1��t+1	xt+1

= bt+1��t+1	−
t∑

i=1
T�t+1	i��t+1	xi� xt+1 ≥ 0

}

for t = 1�2� � � � �N − 1� (8)

Here �t+1 is a realization of �t+1; vectors ct+1��t+1	,
bt+1��t+1	 and matrices At+1��t+1	, T�t+1	i��t+1	 �i = 1,
2� � � � � t	 are realizations of random variables depen-
dent on �t+1; �t+1 �= ��t� xt+1	 for t = 1�2� � � � �N − 1;
and

�N+1��N 	 �= 0 (9)

for all �N . The data for the MSSLP in form (6)–(9)
above consist of:

first stage deterministic data c1, b1, A1, and the
distribution of �ct��t	�bt��t	�At��t	�Tti��t	
�i= 1�2� � � � � t− 1		 for t = 2�3� � � � �N .

(10)

We provide an example in just enough detail to
illustrate the difference between the general and the
independent cases. It is a small three-stage problem
that is based on the problem of Louveaux and Smeers
(1988). The challenge is to plan investments in elec-
trical generation plants (x1 ∈ �4) of four types so
that uncertain future demand can be met at the least
expected cost. Each plant type is operated under one
of three total output conditions: High, medium, and
low. The recourse decisions x2 ∈ �12 and x3 ∈ �12 in
Stages 2 and 3, respectively, represent output levels
for each of the four plant types when operating under
each of three operating modes.
A random variable describes the highest level, or

“peak,” demand for each of the second and third
stages. In the model, these demands are right-hand-
side coefficients in b2 and b3. Two cases are described
in Figure 1, a dependent case and an independent
case. Conditional probabilities are shown along the
arcs, with the realized demands at the nodes. Notice
that in the independent case, the distribution of the
Stage 3 demand is independent of the value of the
Stage 2 demand, whereas that is not true in the depen-
dent case.
The most common standard for specifying input

data for stochastic programs is SMPS (Birge et al.
1987, Gassmann and Schweitzer 2001). This standard
was first proposed by Birge et al. (1987) as an exten-
sion to the MPS standard for specifying input data
for (deterministic) linear programs, and it has recently
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Figure 1 Example

been extended by Gassmann and Schweitzer (2001)
to allow inputs to larger classes of problems to be
specified. The standard is still evolving and has been
implemented to varying degrees in several pieces of
software.
A problem instance in SMPS format is a set of three

files, the so-called “core” file, “time” file, and “stoch”
file. One scenario of the entire problem (i.e., all stages)
is specified in the core file. The core file is in MPS for-
mat, and the information it contains is arranged as if
the problem were a single, large, deterministic linear
program with decisions from all stages occurring at
once. Indeed, it is often impossible, given just the core
file, to guess which variables and constraints belong
in which time stage.
That information is contained in the time file. This

file allows the problem to be parsed into time stages,
so that a deterministic problem in the form (1)–(4) or
(6)–(9) may be obtained.
Finally, the stoch file describes the distribution(s) of

the random variables in the problem.
Often, the instances of a single problem family all

share the same core file and, sometimes, even the
same time file. They usually have unique stoch files.
The problem instances in this collection are expressed
in SMPS format.
As the above description of the ideas behind the

SMPS standard indicates, input data for an MSSLP
specified according to SMPS is not explicitly in
forms (5) or (10). On the other hand, algorithms
for the MSSLP (especially those based on cutting-
plane notions) are stated as sequences of operations
on data in forms (5) or (10). Thus, for imple-
menting algorithms, computer routines are neces-

sary for reading SMPS input data and placing the
data into appropriate data structures. In a compan-
ion effort, we have released as an Online Supplement
to this paper, available from this journal’s web site
(http://joc.pubs.informs.org/), open source C rou-
tines that perform this task. At present our conver-
sion routines do not implement all the features of the
SMPS standard. (Gassmann 2001 has also released a
set of utility routines for reading SMPS data.)
We conclude this section by highlighting three fea-

tures covered by the standard forms (1)–(4) and
(6)–(9) and the SMPS standard, but not by many for-
mulations of the MSSLP found in the computational
stochastic programming literature or by the current
version of our input conversion routines.
1. The MSSLP is often stated in the literature with

the term
∑t

i=1 T�t+1	i��t+1	xi in (3) or (8) replaced by the
term Tt+1��t+1	xt . Note that the resulting “staircase”
structure amounts to setting T�t+1	i��t+1	 �= 0 for i =
1�2� � � � � t− 1, and relabeling T�t+1	t��t+1	 by Tt+1��t+1	.
This allows only a “one-stage-lag,” whereas the stan-
dard forms (1)–(4) and (6)–(9) allow “multistage-
lags.” These multistage-lags also allow the possibility
of problem instances with scenarios that allow no
recourse actions at some stages. This can be achieved
for such scenarios by setting appropriate problem
coefficients equal to zero.
2. A common assumption made in stating the

MSSLP is uniformity of dimensions of random vec-
tors and matrices for a given stage. In the case of
forms (1)–(4) and (6)–(9), this amounts to assum-
ing that ct��t	 ∈ �nt � bt��t	 ∈ �mt �At��t	 ∈ �mt×nt , and
Tti��t	 ∈�mt×ni �i= 1�2� � � � � t− 1� t ≥ 2	, where mt and
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nt are deterministic for t = 1�2� � � � �N . The latest ver-
sion of the SMPS standard (Gassmann and Schweitzer
2001) allows some forms of stochastic dimensions.
Indeed, it is to allow for this flexibility that we have
tacitly avoided indicating vector and matrix dimen-
sions in forms (1)–(4) and (6)–(9).
3. The distributions of random variables in forms

(1)–(4) and (6)–(9) may be continuous or discrete.
While discrete distributions are commonly assumed,
the SMPS standard (Gassmann and Schweitzer 2001)
supports sampling from continuous distributions.

3. The Test-Problem Collection
The 11 families of problems in the test problem collec-
tion were drawn from the literature. In selecting the
families, we attempted to choose a variety in problem
structure, application, size, and solution time.
A summary of information about the test problem

collection is provided in Table 1. For each family, its
name, a reference to its original source, the number
of time stages, and the size of each time stage are

Table 1 Problem Sizes for the Test-Problem Collection

Family Original No. of time Stage: No. of
name source stages sizes scenarios

airlift Midler and Wollmer (1969) 2 1� 2× 4 25
2� 6× 8 25

stocfor Gassmann (1989) 7 1� 15× 15 1
2� 17× 16 64
3� 17× 16 512
4� 17× 16
5� 17× 16
6� 17× 16
7� 17× 16

electric Louveaux and Smeers (1988) 2 1� 2× 4 3
2� 7× 12

currency Klaassen et al. (1990) 4 — —

RY Cariño and Ziemba (1998); Multiple — —
Cariño et al. (1998)

chem Subrahmanyam et al. (1994) 2 1� 38× 37 2
2� 45× 43

environ Fragnière (1995) 2 1� 48× 49 5
2 � 48× 49 5

15
1�200
1�875
3�780
5�292
8�232
32�928

assets Mulvey and Vladimirou (1991); 2 1� 5× 13 100
Mulvey and Ruszczyński (1995) 2� 5× 13 32�768

cargo Mulvey and Ruszczyński (1995) 2 1� 14× 52 2n for n= 0�4,
2� 74× 202 5� � � � �15

phone Sen et al. (1994) 2 1� 1× 8 32�768
2� 23× 84

bonds Frauendorfer et al. (1997) var var var

given. The column titled “No. of scenarios” indicates
the number of scenarios for each problem instance
in the family. The number of entries in this column
indicates the number of problem instances available.
For example, the “environ” family has nine instances,
with random realizations ranging from 5 to 32,928.
The problem family bonds has ten instances available
of various sizes and time stages, and we use “var” in
Table 1 to indicate this. See §3.11 for more details.
Some families of problems already had problem

instances available. These were stocfor, electric, and
bonds. For other families, wewere unable, after contact-
ing the authors, to obtain specific problem instances in
SMPS format. For those problem families—airlift, chem,
environ, assets, cargo, and phone—we created problem
instances based on the corresponding literature source.
There is still no problem instance for the currency and
RY problem families.
The instances of stocfor available in this test problem

collection may be different than those available at the
URL cited in Gassmann (1989). We have changed the
data in our instances since downloading them.
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The remainder of this section consists of a very
short introduction to each of the problem families.

3.1. Airlift Operations Scheduling
This is due to Midler and Wollmer (1969) and is a
two-stage, mixed integer linear stochastic problem.
In scheduling monthly airlift operations, demands

for specific routes can be predicted. Actual require-
ments will be known in the future, and they may not
agree with predicted requirements. Recourse actions
are then required to meet the actual requirements.
The actual requirements are expressed in tons, or any
other appropriate measure, and they can be repre-
sented by a random variable. Aircraft of several dif-
ferent types are available for service. Each of these
types of aircraft has its own restriction on number of
flight hours available during the month.
The recourse actions available include allowing

available flight time to go unused, switching aircraft
from one route to another, and buying commercial
flights. Each of these has its associated cost, depend-
ing on the type(s) of aircraft involved.
The two instances of this family in the collection

are both two-stage with probability distributions con-
taining 25 realizations. Random variables appear in
the right-hand side of Stage 2. The instances are based
on numerical examples given by Midler and Wollmer
(1969).

3.2. Forest Planning
This is due to Gassmann (1989) and is a multistage,
linear stochastic problem.
The job of a long range forest planner is to decide

what parts of the forest will be harvested at what
time. Important criteria for such a decision are the age
of the trees and the likelihood that trees left standing
will be destroyed by fire.
Gassmann creates a set of K age classifications of

equal length (e.g., 20 years) and places each portion of
the forest into one of the classes, according to the age
of the trees within. He also divides the future plan-
ning horizon into T rounds, each with a time length
equal to that of each age classification. That is, in one
time round, any trees that are not destroyed or har-
vested will move to the next age class.
The decision at each time stage is how much of

each classification to harvest, and the risk comes from
random fire damage. The three instances for this fam-
ily originated with Gassmann and have been slightly
changed. Each has seven time stages. Random vari-
ables occur in the right-hand sides of Stages 2 through
T . The three instances have 1, 64, and 512 scenarios,
respectively.

3.3. Electrical Investment Planning
This is due to Louveaux and Smeers (1988) and is a
two-stage, linear stochastic problem.

Louveaux and Smeers (1988) consider the challenge
of planning investments in the electricity generation
industry. While the model is, in general, multistage,
the specific example given in the study of Louveaux
and Smeers (1988) is two-stage. This family has but
one very small two-stage instance, with three random
realizations for a random variable in the right-hand
side of Stage 2.

3.4. Selecting Currency Options
This is due to Klaassen et al. (1990), and is a multi-
stage, nonstaircase, linear stochastic problem.
The situation described by Klaassen et al. (1990)

involves a U.S. multi-national corporation (MNC),
which has significant forecasted revenues in a foreign
currency (FC). If the exchange rate (in $US/FC) goes
down, the MNC would face declining revenue versus
the forecast. To protect, or hedge, against this unde-
sirable possibility, the MNC may choose to purchase
options that guarantee a certain exchange rate at some
point in the future. The guaranteed exchange rate is
called the strike price.
This model is multistage, nonstaircase, with ran-

dom variables in the cost, left-hand side and right-
hand side. There is yet no instance for this family in
the collection, although Klaassen et al. (1990) provide
the data to construct one.

3.5. Financial-Planning Model
This is due to Cariño and Ziemba (1998) and Cariño
et al. (1998, 1994) and is a multistage, linear stochastic
problem.
Cariño and Ziemba (1998) describe a model created

for the Yasuda Fire and Marine Insurance Co., Ltd.
(Yasuda Kasai) of Tokyo by the Frank Russell Com-
pany (Russell) of Tacoma, Washington. The model
is a comprehensive investment, liability, and risk-
planning tool. It is a multistage linear stochastic
model with a steady-state condition imposed on the
last stage.
The complexity of the model is such that it cannot

be completely described in article format. The model
presented is therefore a simplification of the original
(Cariño and Ziemba 1998), although it is much more
detailed than the abbreviated model presented in an
earlier paper (appendix of Cariño et al. 1994). The
model contains random variables in the left-hand side
and right-hand side. There is yet no instance of this
family in the collection.

3.6. Design of Batch Chemical Plants
This is due to Subrahmanyam et al. (1994) and is a
multistage, mixed integer linear stochastic problem.
Subrahmanyam et al. (1994) describe the design of

a batch-type chemical plant to produce products for
which the future demand is unknown. We present
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only half of the problem given in Subrahmanyam
et al. (1994), the “Design SuperProblem.”
The decisions include how many plants to build, of

what type, when to build them, and how to operate
them. Therefore, the problem has some integer deci-
sion variables. A single two-stage instance is included
in the collection. The instance is based on data pro-
vided by Subrahmanyam et al. (1994) and has random
variables in the second stage cost and right-hand side
coefficients. The joint probability distribution has two
realizations.

3.7. Energy and Environmental Planning
This is due to Fragnière (1995) and is a multistage,
linear stochastic problem.
The model by Fragnière (1995) assists the Can-

ton of Geneva in planning its energy supply infras-
tructure and policies. The model is based on the
MARKAL (market allocation) model. This is quite
an extensive model, containing a great degree of
realism. Included is the possibility that emissions of
greenhouse gases will be required to decrease. This
possibility is expressed in a discrete probability dis-
tribution for a right-hand side coefficient.
The model includes equilibrium constraints,

capacity-expansion constraints, demand constraints,
production constraints, and environmental con-
straints. Energy is supplied by many different
technologies, including hydropower, cogeneration,
fossil fuels, urban-waste incineration, and imported
electricity. Demands are also classified by technology.
Examples are electricity for industrial use, gas fur-
naces in existing houses, and wood stoves in new
houses.
The problem created by Fragnière (1995) for the

Canton of Geneva is extremely large and complex,
and the input data format is not SMPS. Therefore,
we have created nine of our own instances for this
family. The numbers in these instances are based on
the authors’ judgment, not actual economic data. The
number of scenarios ranges from 5 to 32,928.

3.8. Network Model for Asset
or Liability Management

This is due to Mulvey and Vladimirou (1991) and is a
two-stage, linear stochastic problem. See also Mulvey
and Ruszczyński (1995).
The management of assets or liabilities can be

regarded as a network problem, where the asset cate-
gories are represented by nodes and transactions are
represented by arcs. The purchase or sale of an asset
usually has fixed, deterministic associated costs, while
the return on an investment from one stage to the
next is usually unknown.
Mulvey and Vladimirou (1991) did not provide data

for the numerical examples that they discuss (Mulvey

1999), so we have created two instances, each with
two stages. There are five nodes in each stage: Check-
ing, savings, certificate of deposit (CD), cash, and
loans. Random coefficients are found in the objec-
tive left-hand side and right-hand side of the second
stage. The smaller problem has 100 random realiza-
tions, while the larger problem has 37,500 realizations.

3.9. Cargo Network Scheduling
This is due to Mulvey and Ruszczyński (1995) and is a
two-stage, mixed integer linear or nonlinear stochastic
problem.
Mulvey and Ruszczyński(1995) provide a two-stage

network problem for scheduling cargo transporta-
tion. The flight schedule is completely determined in
stage one, and the amounts of cargo to be shipped
are uncertain. The recourse actions are to determine
which cargo to place on which flights. Transshipment,
getting cargo from node m to node n by more than
one flight on more than one route, is allowed. When
a transshipment is made, cargo must be unloaded at
some intermediate node, so that it may be loaded onto
a different route going through the same node. Such
nodes are called transshipment nodes. Any undelivered
cargo incurs a penalty. Random variables appear on
the right-hand side only.
Mulvey and Ruszczyński (1995) did not provide

data for the numerical examples that they discuss
(Mulvey 1999). Therefore, we have created some
examples from a four-node network. All flights have
two legs. That is, including the airport of origin,
there are three airports in each flight. Currently, there
are 13 instances in the collection, with 2n scenarios for
n= 0�4�5� � � � �15.
3.10. Telecommunication-Network Planning
This is due to Sen et al. (1994) and is a two-stage,
mixed integer linear stochastic problem.
The service of providing private lines to telecom-

munication customers is one with which most people
are not familiar. Such service is used by large cor-
porations between business locations for high-speed,
private data transmission. Private lines are generally
used for a much longer duration than public switched
service, and they generally carry more capacity per
connection.
A manager of such a network must be constantly

looking to the future, deciding where and how much
to expand capacity. In this problem formulation, the
“how much” is decided beforehand, to some extent,
by the imposition of an overall budget. Within the
constraints of the budget, expansion is not penalized.
The goal is to minimize the unserved requests, while
staying within budget.
Such networks are usually very interconnected, so

that for any point-to-point demand pair, there is
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usually more than one route that may service the
demand. Each route is made of one or more direct
links.
The resulting model is a two-stage network model

with a stochastic (right-hand side) demand variable
in the second stage. We have created an instance with
215 = 32,768 scenarios and six nodes.

3.11. Bond Investment Planning
This is due to Frauendorfer et al. (1997) and is a mul-
tistage, linear stochastic problem.
Frauendorfer et al. (1997) describe a suite of test

problems for multistage stochastic programming,
based on bond investments.
Many business ventures are financed by lending

bonds, and many of these ventures also purchase
bonds. There is risk in such dealings, as returns on
bonds fluctuate, and earnings from the business ven-
tures are uncertain. This risk cannot be modeled by
assuming a mean rate of return. Therefore, the situ-
ation is a good one for the application of stochastic
programming.
The model is multistage with random variables

in the objective and right-hand side. The test prob-
lems are denoted SGPFmYn, where m ∈ �3�5� and n ∈
�3�4�5�6�7�. The number of time stages is n, while
m is the maximum maturity of the bond pool. The
number of scenarios for the SGPF3Yn instances are
25, 125, 625, 3125, and 15,625. Those for the SGPF5Yn
instances are the same. The problems were obtained
from Birge’s POSTS web site (Holmes 1997).

4. Collection Documentation
Along with the data representing the specific prob-
lem instances, we are making available as part of
an Online Supplement to this paper a manuscript.
The Online Supplement is available from this jour-
nal’s website (http://joc.pubs.informs.org/). The goal
of the manuscript is to provide a standard reference
where researchers can quickly find the information
they need without spending a lot of time studying the
original literature source.
To this end, the document contains a section of

identical format for each problem family. Each section
contains four subsections. Here, we briefly describe
and give the motivation for each subsection.

4.1. Description
The real-world application is described, using the
notation of the original source. This allows the
researcher to connect the problem instances they are
solving to the applications from which they came.
Researchers who want to draw conclusions about the
types of problems for which certain algorithms are
most suited may find this section helpful.

Practitioners with similar applications can also use
the description to help them model their own situa-
tions and more easily choose the right algorithm,
based on performance on a similar application.

4.2. Problem Statement
The problem statement shows the mathematical LP
(or NLP) in a single statement. Often, this is simply
a collection of all the equations from the Description
subsection. The notation is still that of the original
source.
This subsection can be useful for those who are per-

haps not interested in the real-world application but
simply want to see what structure the stochastic lin-
ear program has. Many of the original sources do not
state the problem in a single statement. In such a case,
considerable time can be spent reading the original
source and writing the mathematical problem.

4.3. Numerical Example
In this subsection, specific instances are discussed. If
practical, all of the problem data and an optimal solu-
tion are given for each instance. Where this is imprac-
tical, reference is made to specific data files.
In each case, an attempt was made to use data

from the original source. In some cases, not all of
the problem data were included in the original arti-
cle, and in some of those cases, the original authors
were unable to provide original data. In many of these
cases, we created data in an attempt to provide a
problem instance in the spirit of the original source.
This subsection uses the notation of the original

source.

4.4. Notational Reconciliation
This subsection details how one would transform the
problem from the notation of §4.2 to the notation of
§2. This might be useful for those who do not want to
learn the notation of the original source or for com-
puter programmers who wish to transform each prob-
lem to a standard data format.
One of the reasons for providing the documenta-

tion is to lend cohesion to the test-problem collection.
To understand the performance of our algorithms,
researchers need more than just the test data. Being
able quickly to look up problem background, nota-
tion, and structure can be an efficient means to a
deeper insight on algorithm performance.

5. Conclusion
The initial motivation for the present work came
from the need to test carefully the new polynomial
interior cutting-plane algorithms for stochastic pro-
grams developed by Ariyawansa and Jiang (1996).
The design of our test-problem collection was moti-
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vated and influenced by the elegant work of Moré
(1990) and Averick et al. (1991) on test-problem col-
lections for several classes of (deterministic) nonlinear
optimization problems and by the impact such collec-
tions have had on the development of software for
such problem classes (Moré and Toraldo 1991, Lin and
Moré 1999, Benson et al. 2001).
As with all such projects, this is an evolving effort.

The test collection will continue to change as new
applications become prominent and as data formats
improve. While at present all the test problems in
our collection have discrete distributions with a finite
number of realizations, we anticipate adding test
problems with continuous distributions. We encour-
age the stochastic-programming community to assist
us by providing their problem descriptions and data.
It is through the process of updating the test problem
collection that its relevance may be maintained.
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