

Physics 115 Prof. Menningen In-Class Questions & Exercises Name: _

- 1. The position of a mass attached to a vertical spring is given by: $y = A\sin(\omega t + \phi)$, where A, ω , and ϕ have values of 10.0 cm, 450.0 deg/s, and 10.0 deg, respectively. What is the period of its motion?
- 2. A 1.28-kg mass is attached to a spring (k = 512 N/m) and is undergoing simple harmonic motion. (a) What is the period of the motion?
 - (b) What is the frequency of the motion?
- 3. In problem 2 above, the mass would have to be ______ times greater in order to double the period of the motion. (Assume nothing else has changed.)
- 4. In problem 2 above, the spring constant would have to be ______ times greater in order to double the frequency of the motion. (Assume nothing else has changed.)
- 5. The maximum kinetic energy of a particular simple harmonic oscillator is 0.50 J.
 - (a) What is its maximum potential energy? _____ J
 - (b) What is its total mechanical energy? _____J
- 6. Why are the frets on a guitar spaced closer together as you move down the fretboard toward the bridge? Consider answering this question by referring to the graph of λ vs. *f* for every note on a guitar string from A₄ (440 Hz) to A₆ (1760 Hz).

7. Every 5 seconds of time delay between a flash of lightning and the sound of thunder is said to represent one mile of distance. Is this a good rule of thumb? Let's check it for a range of air temperatures, from 5.0°C (41°F) to 35°C (95°F). (Note: 1 mi = 1609 m, $c_{sir} = 331.4 + 0.589T_{c}$ m/s)

8. Sketch the following harmonics in a manner that shows the locations of the displacement nodes and displacement antinodes. (Use sketch formats similar to the notes and textbook.)

System	Harmonic	Sketch	Number of displacement nodes
String	2	}4	
Open cylindrical tube	1		
Closed cylindrical tube	1		
Open cylindrical tube	3		
Closed cylindrical tube	3		

- 9. The "internodal distance" for a particular standing wave pattern in an open cylindrical tube is found to be 0.25 m.
 - (a) What is the wavelength of this standing wave?
 - (b) If the wave propagation speed is known to be 350 m/s, what is the frequency of this standing wave?
 - (c) If the length of the tube is 1.0 m, then is this standing wave the "first harmonic"? If not, which harmonic is it?