Physics 115 Lecture 17

Decibels part II March 2, 2018

The Sound Pressure Level Decibel (dB SPL)

- The sound intensity is related to the pressure amplitude, $I = p_0^2/2Z$.
- A property of logarithms: $\log x^n = n \log x$
- Sound pressure level (decibels)

$$L = 10\log_{10}\left(\frac{I}{I_r}\right) \text{ [dB IL]} = 10\log\left(\frac{p^2/2Z}{p_r^2/2Z}\right) = 10\log\left(\frac{p}{p_r}\right)$$

$$L = 20\log\left(\frac{p}{p_r}\right) \text{ [dB SPL]}$$

The Sound Pressure Level Decibel (dB SPL)

- The reference pressure amplitude is $p_r = 20 \mu Pa = 20 \times 10^{-6} Pa = 2 \times 10^{-5} Pa$.
- A sound wave with a pressure amplitude of 20 µPa has an intensity of 1×10⁻¹² W/m²
- The sound intensity level and sound pressure level produced by the same sound are numerically identical.

Suppose a sound level increases from 82 dB to 85 dB:

	initial		final		
	value	level	value	level	ratio
pressure	0.252 Pa	82 dB SPL	0.356 Pa	85 dB SPL	$\sqrt{2}$
intensity	158 μW/m²	82 dB IL	316 µW/m²	85 dB IL	2.0

Increasing the pressure amplitude by $\sqrt{2}$ will double the sound intensity and increase the sound level by 3 dB

Suppose a sound level increases from 82 dB to 88 dB:

	initial		final		
	value	level	value	level	ratio
pressure	0.252 Pa	82 dB SPL	0.502 Pa	88 dB SPL	2.0
intensity	158 μW/m²	82 dB IL	631 μW/m²	88 dB IL	4.0

Doubling the pressure amplitude will quadruple the sound intensity and increase the sound level by 6 dB

Suppose a sound level increases from 82 dB to 92 dB:

	initial		final		
	value	level	value	level	ratio
pressure	0.252 Pa	82 dB SPL	0.796 Pa	92 dB SPL	$\sqrt{10}$
intensity	158 μW/m²	82 dB IL	1580 µW/m²	92 dB IL	10

Increasing the pressure amplitude by $\sqrt{10}$ will increase the sound intensity by a factor of 10 and increase the sound level by 10 dB

Adding sound waves

 When two sounds combine, their intensities add, but not their pressure amplitudes nor their sound levels in dB.

A baby cries with a sound level of 69.03 dB $I_1 = I_r 10^{L/10} = (1.0 \times 10^{-12} \text{ W/m}^2) 10^{69.03/10}$ $= 8.0 \times 10^{-6} \text{ W/m}^2$

Four babies cry with a sound level

$$\begin{split} I_4 &= 4 \times I_1 = 32 \times 10^{-6} \text{ W/m}^2 \\ L &= 10 \log \left(\frac{3.2 \times 10^{-5} \text{ W/m}^2}{1.0 \times 10^{-12} \text{ W/m}^2} \right) \\ &= \boxed{75 \text{ dB IL}} \end{split}$$