Physics 115 Lecture 16

Decibels part I March 1, 2018

Written quiz #4

Based on homework #4

Posted <u>answer key</u>

Sound is a pressure wave

Waves oscillate in space and time

Sound Intensity

 The intensity / describes the rate at which energy is transported by the sound wave.

It has units of watts per square meter

sound intensity $(I) = \frac{\text{sound power } (P)}{\text{area } (A)} \implies I = \frac{P}{A}$ also, it turns out $I = \frac{p^2}{Z} = \frac{\left[p_0 \sin(kx - \omega t)\right]^2}{Z}$

Sound Intensity

The intensity / rapidly oscillates with the wave. Most often, then, the symbol / actually refers to the time average of the power delivered by the wave.

• The time average of $\sin^2(\omega t) = \frac{1}{2}$, so $I_{\text{time averaged}} = \frac{p_0^2}{2Z}$

 Thus the intensity of a sound wave is proportional to the square of the pressure amplitude.

In order to triple the sound intensity, you must

A

- A. cut the pressure amplitude by a factor of 3
- B. increase the pressure amplitude by a factor of $\sqrt{3}$.
- C. increase the pressure amplitude by a factor of 3.
- D. increase the pressure amplitude by a factor of 9.

42 of 46

Ο

In order to triple the sound intensity, you must

- A. cut the pressure amplitude by a factor of 3
- **B.** increase the pressure amplitude by a factor of $\sqrt{3}$.
- C. increase the pressur $I = \frac{p_0^2}{2Z} \implies p_0 = \sqrt{2ZI}$ by a factor of 3.
- D. increase the pressur $p_{0, \text{ new}} = \frac{N}{p_{0, \text{ new}}}$

$$\frac{p_{0, \text{ new}}}{p_{0, \text{ old}}} = \frac{\sqrt{2Z I_{\text{new}}}}{\sqrt{2Z I_{\text{old}}}} = \sqrt{\frac{3I_{\text{old}}}{I_{\text{old}}}} = \sqrt{3}$$

Intensity of a point source of sound waves

Copyright © 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins

Intensity of a point source of sound waves

- The emitted power P gets spread out over the surface of an expanding sphere, which is the sound wave that is propagating in three dimensions
- The surface area of a sphere of radius *r* is 4πr².

$$I_{\text{point source}} = \frac{P}{A} = \frac{P}{4\pi r^2}$$

What is the intensity of a sound wave at a distance of 2.8 m from a sound source that generates 235 W of sound power?

A. 0.98 W/m²
B. 2.39 W/m²
C. 4.52 W/m²
D. 8.77 W/m²

What is the intensity of a sound wave at a distance of 2.8 m from a sound source that generates 235 W of sound power?

A. 0.98 W/m²
B. 2.39 W/m²
C. 4.52 W/m²
D. 8.77 W/m²

$$= \frac{P}{4\pi r^2} = \frac{235 \text{ W}}{4\pi (2.8 \text{ m})^2}$$
$$= 2.39 \text{ W/m}^2$$

(This would be an extremely loud 124 dB sound, above the threshold of pain!)

Intensity range of hearing

 The human ear can sense an enormous range of sound intensities

	Minimum intensity (reference level)	Threshold of pain
Pressure (μ Pa = 10 ⁻⁶ Pa)	20	2.0×10 ⁷
Intensity (W/m ²)	1.0×10 ⁻¹²	1.0

 This large range of intensities can be more easily handled by a logarithmic scale. Actually, two logarithmic scales...

The Decibel

- Developed in the Bell Telephone Labs initially as a way to describe power loss over telephone transmission lines.
- The Bel

$$L = \log_{10} \left(\frac{\text{sound power}}{\text{reference power}} \right) = \log_{10} \left(\frac{P}{P_r} \right)$$

 Initially believed to correlate with human perception of loudness.

The Intensity Level Decibel (dB IL)

- The standard means of measuring the amplitude of an acoustic signal.
- Intensity Level (bels) = Log I / I_r
 - Too small, would be working with decimals quite a bit
- Intensity Level (decibels)

 $L = 10 \log_{10} \left(\frac{I}{I_r} \right) \text{ [dB IL]}$

Less need to work with decimals.

Finding the intensity level

 The threshold of pain occurs at around *I* = 1.0 W/m². The corresponding intensity level is:

$$L = 10 \log\left(\frac{I}{I_r}\right)$$

= $10 \log\left(\frac{1.0 \text{ W/m}^2}{1.0 \times 10^{-12} \text{ W/m}^2}\right)$
= $10 \log(1.0 \times 10^{12}) = 10[12]$
 $L = 120 \text{ dB IL}$

Range of intensities and levels

TABLE 14–2 Sound Intensities (W/m²)

Loudest sound produced	
in laboratory	10^{9}
Saturn V rocket at 50 m	10^{8}
Rupture of the eardrum	10^{4}
Jet engine at 50 m	10
Threshold of pain	1
Rock concert	10^{-1}
Jackhammer at 1 m	10^{-3}
Heavy street traffic	10^{-5}
Conversation at 1 m	10^{-6}
Classroom	10^{-7}
Whisper at 1 m	10^{-10}
Normal breathing	10^{-11}
Threshold of hearing	10^{-12}

A sound has an intensity of 5.0×10⁻⁴ W/m². What is the sound level?

A. 87 dB IL
B. 50 dB IL
C. 40 dB IL
D. -33 dB IL

A sound has an intensity of 5.0×10⁻⁴ W/m². What is the sound level?

$$L = 10 \log_{10} \left(\frac{I}{I_r} \right)$$
A. 87 dB IL
B. 50 dB IL
C. 40 dB IL
D. -33 dB IL

$$L = 10 \log_{10} \left(\frac{5 \times 10^{-4} \text{ W/m}^2}{1 \times 10^{-12} \text{ W/m}^2} \right)$$

Similarly, an $I = 1 \times 10^{-4}$ W/m² sound has a level of 80 dB. In other words, an 87-dB sound has five times the *intensity* of an 80-dB sound (but it is *not* perceived as "five times louder" to the ear)

Finding the intensity

The intensity of a 55 dB IL sound is:

 $\frac{L}{10} = \frac{10}{10} \log\left(\frac{I}{I_{\pi}}\right)$ $L/10 = \log(I/I_r)$ make both sides an exponent $10^{L/10} = 10^{\log(I/I_r)} = I/I_r$ multiply both sides by I_r $|I_r 10^{L/10} = I| = I_r 10^{(55 \text{ dB})/10}$ $I = (1.0 \times 10^{-12} \text{ W/m}^2) 10^{5.5}$ $I = 3.17 \times 10^{-7} \text{ W/m}^2$

What is the intensity of a 102-dB sound?

- A. 1.02×10⁻¹² W/m²
- B. 1.58×10⁻² W/m²
- C. 3.72×10⁻⁴ W/m²
- D. 4.51×10⁻⁸ W/m²

What is the intensity of a 102-dB sound?

- A. 1.02×10⁻¹² W/m²
- **B. 1.58×10⁻² W/m²**
- C. 3.72×10⁻⁴ W/m²
- D. 4.51×10⁻⁸ W/m²
- $I = I_r 10^{L/10}$ = $(1.0 \times 10^{-12} \text{ W/m}^2) 10^{102/10}$
- $I = 1.58 \times 10^{-2} \text{ W/m}^2$

$$=$$
 0.0158 W/m²