Physics 115 Lecture 5

Wave properties **February 1, 2018**

Class quiz #1: Bill bounces on a pogo stick like a mass on a spring. Ted, who has half the mass of Bill, will bounce on the pogo stick with a frequency that is _____ the frequency that Bill bounces.

A. twice B. a factor of $\sqrt{2}$ times greater than

C. a factor of $\sqrt{2}$ times less than Recall that $T = 2\pi$

D. half

Recall that $T = 2\pi \sqrt{m/k}$, or $f = \frac{1}{2\pi} \sqrt{k/m}$

f decreases with \sqrt{m} , so f will increase

by a factor of $\sqrt{2}$ when *m* is cut in half. Or try a ratio:

$$\frac{f_{\text{Ted}}}{f_{\text{Bill}}} = \frac{\frac{1}{2\pi} \sqrt{\frac{k}{m_{\text{Ted}}}}}{\frac{1}{2\pi} \sqrt{\frac{k}{m_{\text{Bill}}}}} = \sqrt{\frac{1/m_{\text{Ted}}}{1/m_{\text{Bill}}}} = \sqrt{\frac{m_{\text{Bill}}}{m_{\text{Ted}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{Bill}}}} = \sqrt{\frac{1}{2} \frac{m_{\text{Bill}}}{m_{\text{$$

Written quiz #1

Based on homework #1

Posted <u>answer key</u>

Chapter 5 p.90 Homework Set #2

Waves and oscillations

- Waves make oscillations, and oscillations make waves
- Animated <u>applet</u>
- String waves example
- Radio waves example

Describing waves

Wave features

Describing waves

- Animated <u>applet</u>
- Frequency
- Wavelength <u>applet</u>
- Speed

 $v = \frac{\text{distance}}{\text{time}} = \frac{\lambda}{T} = \boxed{f \lambda = c}$

 The speed of a wave is determined by the properties of the medium, NOT either frequency or wavelength How far does a wave travel in one period?

A. It depends on the frequency B. 0.50λ C. 1.0λ D. 2.0λ

How far does a wave travel in one period?

A. It depends on the frequency
B. 0.50λ
C. 1.0λ
D. 2.0λ

A wave *always* travels one wavelength during one oscillation period.

A wave oscillates 4.0 times a second and has a wavelength of 3.0 m. What is its speed?

A. 4.0 m/s
B. 0.75 m/s
C. 1.33 m/s
D. 12 m/s

A wave oscillates 4.0 times a second and has a wavelength of 3.0 m. What is its speed?

A. 4.0 m/s
B. 0.75 m/s
C. 1.33 m/s
D. 12 m/s

$$c = f \lambda = (4.0 \text{ Hz})(3.0 \text{ m})$$

= 12 m/s

Transverse vs. Longitudinal Waves

- Transverse waves: Particle displacements are perpendicular to the direction of wave propagation.
- Longitudinal waves: Particle displacements are parallel to the direction of wave propagation.

The waves that travel across the surface of water are _____ waves.

A. particle
B. transverse
C. longitudinal
D. tangential

The waves that travel across the surface of water are _____ waves.

A. particle
B. transverse
C. longitudinal
D. tangential

Transverse is the best answer because the oscillation is (mostly) perpendicular to the direction of propagation. However, surface water waves are actually a combination of transverse and longitudinal (see p.91). Sonar waves that travel through the *bulk* of fluids, beneath the surface, are longitudinal.

Nonrecurring vs. Periodic Waves

- Nonrecurring waves: Isolated pulses, like a thunderclap sound wave, or a tsunami.
- Periodic waves: Continuously repeating wave, like a tuning fork sound wave, or waves at a beach.

Sound and Media

- Sound waves require a *medium*, such as gas, liquid, or solid.
 - Sound waves that propagate through gas are longitudinal.
 - Sound waves that propagate through liquids and solids can have both transverse and longitudinal components. * <u>http://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html</u>
 - * Animation courtesy of Dr. Dan Russell, Penn State University
- Sound waves cannot propagate through a vacuum.

(http://www.youtube.com/watch?v=q2pj9k1lrsM&feature=related)

(Star Trek exception? http://www.youtube.com/watch?v=hdjL8WXjlGl)

Some Sounds You Hear, Some Sounds You Don't

- Audible Sound: 20 Hz to 20,000 Hz
- Infrasound (f < 20 Hz)</p>
- Ultrasound (f > 20,000 Hz)
- Sounds abound! You are *never* free from sound.

- Sound exhibits classical wave behavior, similar to the behavior of water waves and light waves.
 Such behavior includes ...
- Superposition: waves can pass through one another. When they do, their amplitudes add.
- Animated <u>applet</u>

another animation:

http://www.acs.psu.edu/drussell/Demos/superposition/superposition.html

The blue wave has a larger amplitude than the other two waves because its amplitude is the superposition of the other two.

Interference: one wave can cancel or reinforce another. (animated <u>applet</u>)

interference pattern formed by two sources of periodic waves in a water ripple tank

Constructive & Destructive interference

 Refraction: when the wave enters a new medium, its direction of propagation can change.

A marching band analogy of a wave changing direction when it enters a slower medium

Refraction

 Diffraction: Waves spread out after passing through an aperture or upon encountering an obstacle.

Diffraction

OBSTACLE

APERTURE

- Doppler effect: The wave frequency measured by an observer is affected by the motion of the wave source and/or by the motion of the observer.
- (More about the Doppler effect later in the course!)

- Sound exhibits classical wave behavior, similar to the behavior of water waves and light waves. Such behavior includes ...
 - <u>Superposition</u>: waves can pass through one another. When they do, their amplitudes add.
 - ◆ Interference: one wave can cancel or reinforce another.
 - <u>Refraction</u>: when the wave enters a new medium, its direction of propagation can change.
 - <u>Diffraction</u>: Waves spread out after passing through an aperture or upon encountering an obstacle.
 - <u>Doppler effect</u>: The wave frequency measured by an observer is affected by the motion of the wave source and/or by motion of the observer.

Reflection

- Waves also behave differently than particles when they reflect
- When a wave encounters a *slower* medium, a reflected crest becomes a trough
- When a wave encounters a faster medium, a reflected crest remains a crest
- Animated <u>applet</u>
- Interactive <u>PhET applet</u>

